Equations For Isentropic Compressible Flows In Variable Area Ducts

Bhupinder S. Gill
Manav Rachna Innovation and Incubation Centre, Faridabad (Haryana) (India)
Email: bsgill.fet@mriu.edu.in

Abstract

Analysis of compressible flow in variable area ducts can be carried out using simple algebraic equations: no need to read M from tables. Availability of modern computers makes compressible flow analysis quite simple and straight forward.

Keywords

Compressible flow; governing equations; variable area ducts.

1. INTRODUCTION

Analysis of compressible flows in ducts is invariably done by introducing the parameter M (Mach number). For solution of real life problems one needs to refer to various tables of precalculated values. There is a fundamental problem with this approach: one may determine Mach number at a location but will need additional information like temperature to determine the velocity. Also interpolation is usually necessary to arrive at exact figures which can potentially introduce errors in calculations.

Consider, for instance, the example 5.1 of ref.1. Reservoir pressure and temperature are given and the air flows through a convergent-divergent nozzle. At a location in the convergent section where nozzle area is 6 times the throat area, first of all the value of M is read from a table. Then two ratios (one for pressures and the other for the temperatures) are read from another table. Then the actual pressure and actual temperature are determined by multiplying the ratios with stagnation values. Similar procedure is followed for the divergent section by reading values from different tables.

It is possible to analyze the problem in a simple way starting from initial conditions and proceeding downstream using standard laws. This is the subject matter of this communication.

2. BASIC EQUATIONS

Equation of state: $p=\rho R T$ where ρ is density of the fluid, p is the absolute pressure and T is the absolute temperature. R is the gas constant ($287 \mathrm{~J} / \mathrm{kg}$.K for air).

Ratio of specific heats $\gamma=c_{p} / c_{v}$ where $c_{p}=\gamma R /(\gamma-1)$
and $c_{v}=R /(\gamma-1)$. For air, $c_{p}=1004 \mathrm{~J} / \mathrm{kg} . \mathrm{K}$ and $\gamma=1.4$.
Continuity equation: $\rho_{1} A_{1} V_{1}=\rho_{2} A_{2} V_{2}$ or
$\left.\rho_{1} / \rho_{2}\right)=\left(\mathrm{A}_{2} / \mathrm{A}_{1}\right)\left(\mathrm{V}_{2} / \mathrm{V}_{1}\right)$
(V_{1} and V_{2} are velocities, m / s)

From equation of state:
$\mathrm{T}_{2}=\left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)\left(\mathrm{A}_{2 /} \mathrm{A}_{1}\right)\left(\mathrm{V}_{2} / \mathrm{V}_{1}\right) \cdot \mathrm{T}_{1}$
Steady state energy equation (neglecting potential energy):
$\frac{V_{2}{ }^{2}}{2}+\frac{\gamma}{\gamma-1} R T_{2}=\frac{V_{1}{ }^{2}}{2}+\frac{\gamma}{\gamma-1} R T_{1}$
Or $V_{2}{ }^{2}+Z . T_{2}=V_{1}{ }^{2}+Z . T_{1}$
where $Z=2 \gamma R /(\gamma-1)=2009$ for air.
For isentropic flow: $\frac{p_{1}}{\rho_{1} \gamma}=\frac{p_{2}}{\rho_{2} \gamma}$
or $\quad\left(\frac{p_{1}}{p_{2}}\right)=\left(A_{2} / A_{1}\right)^{\gamma}\left(V_{2} / V_{1}\right)^{\gamma}$
From equations 1, 2 and 3,

$$
\begin{equation*}
\left(\frac{V_{2}}{V_{1}}\right)^{2}+Z \cdot\left(\frac{V_{2}}{V_{1}}\right)^{(1-\gamma)}\left(\frac{A_{1}}{A_{2}}\right)^{(\gamma-1)} \frac{T_{1}}{V_{1}{ }^{2}}=1+\frac{Z . T_{1}}{V_{1}{ }^{2}} \tag{4}
\end{equation*}
$$

Similarly following equations can be derived

$$
\begin{align*}
& \left(\frac{A_{1}}{A_{2}}\right)^{2}\left(\frac{T_{1}}{T_{2}}\right)^{\frac{2}{(\gamma-1)}}+Z \cdot \frac{T_{2}}{V_{1}{ }^{2}}=1+\frac{Z \cdot T_{1}}{V_{1}{ }^{2}} \tag{5}\\
& \left(\frac{A_{1}}{A_{2}}\right)^{2}\left(\frac{p_{1}}{p_{2}}\right)^{\left(\frac{2}{\gamma}\right)}+\frac{Z \cdot T_{1}}{V_{1}{ }^{2}}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{(\gamma-1)}{\gamma}}=1+\frac{Z \cdot T_{1}}{V_{1}{ }^{2}} \tag{6}\\
& \left(\frac{A_{1}}{A_{2}}\right)^{2}\left(\frac{\rho_{1}}{\rho_{2}}\right)^{2}+\frac{Z \cdot T_{1}}{V_{1}{ }^{2}}\left(\frac{\rho_{2}}{\rho_{1}}\right)^{(\gamma-1)}=1+\frac{Z \cdot T_{1}}{V_{1}{ }^{2}} \tag{7}
\end{align*}
$$

Equations 4 to 7 are for isentropic compressible flow in a variable area duct. Velocity at any location in the duct can be calculated from eqn 4 , temperature from eqn 5 , pressure from eqn 6 and density from eqn 7. Help of spreadsheet like Excel is needed to determine the values ('goal seek' needs to be used). Velocity of sound can be calculated from the knowledge of γ, R and T and Mach number can be calculated as the ratio of fluid velocity and velocity of sound.

3. EXAMPLES

Consider a converging nozzle with a diameter of 100 mm at the inlet and 70 mm somewhere downstream. Two cases are analyzed: first with velocity of $100 \mathrm{~m} / \mathrm{s}$ at the inlet and, second, with inlet velocity of $10 \mathrm{~m} / \mathrm{s}$ (see chart 1 cells B4 and D4). The value of right hand side of equations 4 to 7 is 63.8817 (cell B12) for the first case and 6289.17 (cell D12) for the second case.

Chart 1:results of calculations for low and high velocities.

Velocity V2 is determined from eqn 4 in such a way that the value of the LHS of eqn 4 matches with the value of RHS; this can be done by using 'goal seek' function of spreadsheet. It can be seen that when the inlet velocity is $10 \mathrm{~m} / \mathrm{s}$, the velocity at the second section is $20.43 \mathrm{~m} / \mathrm{s}$ (cell E18). When the velocity at first section is $100 \mathrm{~m} / \mathrm{s}$, the velocity at second section would be $258.7 \mathrm{~m} / \mathrm{s}$ (cell C18).

Temperature at second section would be 312.8 K (cell E22) (hardly different from that at first section) for the $10 \mathrm{~m} / \mathrm{s}$ case whereas it would be 284.7 K (cell C22) for the $100 \mathrm{~m} / \mathrm{s}$ case (substantially different from the figure of 313 K at first section).

Pressure at second section would be 100823 Pa (cell E25) for the $10 \mathrm{~m} / \mathrm{s}$ case whereas it would be 72452 Pa (cell C25) for the $100 \mathrm{~m} / \mathrm{s}$ case.

Density at second section would be $1.123 \mathrm{~kg} / \mathrm{m}^{3}$ (cell E28) (hardly different from $1.124 \mathrm{~kg} / \mathrm{m}^{3}$ at first section) for the 10 m / s case whereas it would be $0.88 \mathrm{~kg} / \mathrm{m}^{3}$ (cell C28) for the $100 \mathrm{~m} / \mathrm{s}$ case.

Mach number for the $10 \mathrm{~m} / \mathrm{s}$ case varies from 0.0282 (cell D32) to 0.058 (cell E32). For the $100 \mathrm{~m} / \mathrm{s}$ case, it varies from 0.282 (cell B32) to 0.765 (cell C32).

All the above calculations have been done without resorting to reading value of Mach number as a first step.

Consider another example: Let example 5.1 of ref. 1 be modified as follows. Consider the isentropic subsonicsupersonic flow through a convergent-divergent nozzle. There
are two locations in the nozzle where $\mathrm{A} / \mathrm{A}^{*}=6$; one in the convergent section and the other in the divergent section. Let pressure and temperature in the reservoir be 10 atm and 300 K (velocity being assumed zero).

Let subscript 0 denote the point in the reservoir, 1 denote the location of the section in convergent section, 2 denote the throat and 3 denote the section in the divergent section. Areas at sections 1 and 3 are six times the area at section 2. Velocity at section 1 is given as $33.6 \mathrm{~m} / \mathrm{s}$. Calculate velocity, temperature, pressure, density and M at each location.

Information at location 0 is fully known. $\mathrm{P}_{0}=10 \mathrm{~atm}$ (1032500 Pa); $\mathrm{T}_{0}=300 \mathrm{~K}$. From this information we can calculate density $\rho_{0}=P_{0} /$ R. T_{0} where R is the gas constant ($287 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$ for air). This gives $\rho_{0}=11.992 \mathrm{~kg} / \mathrm{m}^{3}$.

Since velocity is known at section 1, temperature at section 1 can be calculated.
$\mathrm{T}_{1}=\mathrm{T}_{0}-\mathrm{V}_{1}{ }^{2} /\left(2 . \mathrm{C}_{\mathrm{p}}\right)$ which gives $\mathrm{T}_{1}=299.44 \mathrm{~K}$.
From two equations ($\rho_{1}=p_{1} / \mathrm{RT}_{1}$ and $\mathrm{p} 1=\mathrm{p}_{0}-\rho_{1} \cdot \mathrm{~V}_{1}^{2} / 2$), p_{1} and ρ_{1} can be calculated.
$\mathrm{P}_{1}=1025762 \mathrm{~Pa}$ and $\rho_{1}=11.93607 \mathrm{~kg} / \mathrm{m}^{3}$.
Thus $\mathrm{c} 1=346.8619 \mathrm{~m} / \mathrm{s} ; \mathrm{M} 1=0.096869$.

Table 1: Comparison of values as per reference 1 and this communication.

Location	Item	Value as per ref. 1	Value as per this communication
1	Velocity, m/s	$\begin{aligned} & \hline 33.6 \\ & \text { (given) } \\ & \hline \end{aligned}$	33.6 (given)
	Temperature, K	299.4	299.4355
	Pressure, atm	9.94	9.9347
	Density, $\mathrm{kg} / \mathrm{m}^{3}$	§	11.9361
	Speed of sound, m/s	§	346.8619
	Mach No	0.097	0.096869
2	Velocity, m/s	§	306.525
	Temperature, K	§	253.23
	Pressure, atm	§	5.5262
	Density, $\mathrm{kg} / \mathrm{m}^{3}$	§	7.8503
	Speed of sound, m/s	§	318.98
	Mach No	§	0.960955
3	Velocity, m/s	646.7	646.84
	Temperature, K	91.77	91.73
	Pressure, atm	0.154	0.1581
	Density, $\mathrm{kg} / \mathrm{m}^{3}$	§	0.62
	Speed of sound, m/s	192	191.98
	Mach No	3.368	3.369
§ - Not given			

Information at location 2 can be calculated from equations 4 to 7 specifying $\mathrm{A}_{2} / \mathrm{A}_{1}=1 / 6$.
$\mathrm{V}_{2}=306.525 \mathrm{~m} / \mathrm{s} ; \quad \mathrm{T}_{2}=253.23 \mathrm{~K} ; \mathrm{P}_{2}=570575.8 \mathrm{~Pa}(5.5262$ $\mathrm{atm}) ; \rho_{2}=7.8503 \mathrm{~kg} / \mathrm{m}^{3} ; \mathrm{c} 2=318.98 \mathrm{~m} / \mathrm{s} ; \mathrm{M} 2=0.960955$.

Again information at location 3 can be obtained from equations 4 to 7 by taking $\mathrm{A}_{3} / \mathrm{A}_{1}$ as 1 .
$\mathrm{V} 3=646.84 \mathrm{~m} / \mathrm{s} ; \quad \mathrm{T} 3=91.732 \mathrm{~K} ; \quad \mathrm{P} 3=16323.1 \mathrm{~Pa}(0.1581$ $\mathrm{atm}) ; \mathrm{c} 3=191.98 \mathrm{~m} / \mathrm{s} ; \mathrm{M} 3=3.369$.

Thus the information in summary is given in table 1 .

4. AREA RATIO LIMITS

An examination of equations 4 to 7 shows that V_{1} and T_{1} are the only parameters having absolute values; rest everything $\left(A_{2} / A_{1}, V_{2} / V_{1}, T_{2} / T_{1}, P_{2} / P_{1}\right.$ and $\left.\rho_{2} / \rho_{1}\right)$ is in ratio form. All equations have two solutions: one for the subsonic region and the other for the supersonic region. Solution of the equations is real only for area ratio $\mathrm{A}_{2} / \mathrm{A}_{1}$ more than a critical value. Consider, for instance, eqn. 4 from which we can calculate $\mathrm{V}_{2} / \mathrm{V}_{1}$ for various values of area ratio $\mathrm{A}_{2} / \mathrm{A}_{1}$. Taking $\mathrm{V}_{1}=10$ m / s and $\mathrm{T}_{1}=313 \mathrm{~K}$ we get curve 2 in fig. 1 which shows the plot of V_{2} / V_{1} vs. A_{2} / A_{1}. That the equation 4 has two solutions for each value of $\mathrm{A}_{2} / \mathrm{A}_{1}$ is also apparent from the fig.1.

Fig.1: Variation of V2/V1 w.r.t A2/A1 for various values of V1 and T1

Minimum value of ratio $\mathrm{A}_{2} / \mathrm{A}_{1}$ for which we get real solution for curve 2 is 0.0487 ; let this be denoted by A_{m}. The value of A_{m} depends only upon values of V_{1} and T_{1}.

The value of A_{m} can be approximated by the empirical equation $A_{m}=0.0862 V_{1} / \sqrt{T_{1}}$. Somehow, A_{m} seems to represent choked flow. Before making any calculations, one should check the value of A_{m} and make sure that the value of ratio A_{2} / A_{1} is not smaller than A_{m}.

5. TEMPERATURE, PRESSURE AND DENSITY

Equations 5, 6 and 7 also have two solutions for each value of the ratio A_{2} / A_{1} above A_{m}. Fig. 2 shows variation of temperature, pressure and density ratios $\left(\mathrm{T}_{2} / \mathrm{T}_{1}, \mathrm{P}_{2} / \mathrm{P}_{1}\right.$ and $\mathrm{Ro}_{2} / \mathrm{Ro}_{1}$) as functions of $\mathrm{A}_{2} / \mathrm{A}_{1}$ for subsonic region. Similarly fig. 3 shows variation of these ratios as a function of $\mathrm{A}_{2} / \mathrm{A}_{1}$ for the supersonic region.

6. INCOMPRESSIBLE VS COMPRESSIBLE FLOW

Fluid flows are usually classified as compressible and incompressible flows depending upon velocities involved.

Fig.2: Variation of temperature, pressure and density ratios (T2/T1, P2/P1, Ro2/Ro1) for subsonic region.

Fig.3: Variation of temperature, pressure and density ratios (T2/T1, P2/P1 and Ro2/Ro1) for supersonic region

While compressible flow is the real life phenomenon, certain assumptions are made for ease of calculations and the flow is called incompressible. It is to be noted that analyses using incompressible flow equations always contain an error, howsoever small. In fact, the incompressible flow has been called a myth ${ }^{1}$. While incompressible analysis may be acceptable in a few practical situations, in some situations it may be desirable to use compressible flow equations to arrive at more accurate results. With availability of simple equations for compressible flows as derived above and computing power of modern day computers, it is no longer necessary to make any assumptions; one can easily solve all duct flow problems as compressible flows.

Venturi meters are often used to measure fluid flow rates and, usually, fluids are considered incompressible. If gas flow rates are being measured by venturi meters, one needs to be careful while assuming fluid to be incompressible particularly for high velocities. It may be better and more accurate if the analysis is carried out using compressible flow equations.

7. CONCLUSION

The usual method of analyzing duct flow problems for compressible fluids need no longer be solved using Mach number tables. Straight forward equations are presented which can be solved using modern computers. The need to interpolate values is dispensed with. Accuracy of results is higher than traditional method.

8. REFERENCE

[1] Modern compressible flow with historical perspective (third edition), John D. Anderson, McGraw Hill.

