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ABSTRACT 

Analysis of compressible flow in variable area ducts can be 

carried out using simple algebraic equations: no need to read 

M from tables. Availability of modern computers makes 

compressible flow analysis quite simple and straight forward. 

Keywords 

Compressible flow; governing equations; variable 

area ducts. 

1. INTRODUCTION 
Analysis of compressible flows in ducts is invariably done by 

introducing the parameter M (Mach number). For solution of 

real life problems one needs to refer to various tables of 

precalculated values. There is a fundamental problem with 
this approach: one may determine Mach number at a location 

but will need additional information like temperature to 

determine the velocity. Also interpolation is usually necessary 

to arrive at exact figures which can potentially introduce 
errors in calculations. 

Consider, for instance, the example 5.1 of ref.1. Reservoir 

pressure and temperature are given and the air flows through a 

convergent-divergent nozzle. At a location in the convergent 
section where nozzle area is 6 times the throat area, first of all 

the value of M is read from a table. Then two ratios (one for 

pressures and the other for the temperatures) are read from 

another table. Then the actual pressure and actual temperature 
are determined by multiplying the ratios with stagnation 

values. Similar procedure is followed for the divergent section 

by reading values from different tables. 

It is possible to analyze the problem in a simple way starting 
from initial conditions and proceeding downstream using 

standard laws. This is the subject matter of this 

communication. 

2. BASIC EQUATIONS 
Equation of state: p = RT where  is density of the fluid, p is 
the absolute pressure and T is the absolute temperature. R is 
the gas constant (287 J/kg.K for air). 

Ratio of specific heats  = cp/cv where cp = R/( - 1)  

and cv  = R/( - 1). For air, cp = 1004 J/kg.K and  =1.4. 

Continuity equation: 1 A1 V1 = 2 A2 V2  or    

1/2) = (A2/A1) (V2/V1)       

 (V1 and V2 are velocities, m/s) 

From equation of state:  

T2 = (p2/p1) (A2/A1) (V2/V1).T1                                       (1) 

Steady state energy equation (neglecting potential energy): 
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where Z = 2R/ (-1) =2009 for air. 

For isentropic flow:   
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From equations 1, 2 and 3, 
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Similarly following equations can be derived 
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Equations 4 to 7 are for isentropic compressible flow in a 
variable area duct. Velocity at any location in the duct can be 

calculated from eqn 4, temperature from eqn 5, pressure from 

eqn 6 and density from eqn 7. Help of spreadsheet like Excel 

is needed to determine the values (‘goal seek’ needs to be 

used). Velocity of sound can be calculated from the 

knowledge of , R and T and Mach number can be calculated 
as the ratio of fluid velocity and velocity of sound. 

3. EXAMPLES 
Consider a converging nozzle with a diameter of 100 mm at 

the inlet and 70 mm somewhere downstream. Two cases are 
analyzed: first with velocity of 100 m/s at the inlet and, 

second, with inlet velocity of 10 m/s (see chart 1 cells B4 and 

D4). The value of right hand side of equations 4 to 7 is 

63.8817 (cell B12) for the first case and 6289.17 (cell D12) 

for the second case. 
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Velocity V2 is determined from eqn 4 in such a way that the 
value of the LHS of eqn 4 matches with the value of RHS; 

this can be done by using ‘goal seek’ function of spreadsheet. 

It can be seen that when the inlet velocity is 10 m/s, the 

velocity at the second section is 20.43 m/s (cell E18). When 
the velocity at first section is 100 m/s, the velocity at second 

section would be 258.7 m/s (cell C18).  

Temperature at second section would be 312.8 K (cell E22) 

(hardly different from that at first section) for the 10 m/s case 
whereas it would be 284.7K (cell C22) for the 100 m/s case 

(substantially different from the figure of 313K at first 

section). 

Pressure at second section would be 100823 Pa (cell E25) for 
the 10 m/s case whereas it would be 72452 Pa (cell C25) for 

the 100 m/s case. 

Density at second section would be 1.123 kg/m3 (cell E28) 

(hardly different from 1.124 kg/m3 at first section) for the 10 
m/s case whereas it would be 0.88 kg/m3 (cell C28) for the 

100 m/s case. 

Mach number for the 10 m/s case varies from 0.0282 (cell 

D32) to 0.058 (cell E32). For the 100 m/s case, it varies from 
0.282 (cell B32) to 0.765 (cell C32). 

All the above calculations have been done without resorting to 

reading value of Mach number as a first step. 

Consider another example: Let example 5.1 of ref.1 be 

modified as follows. Consider the isentropic subsonic-

supersonic flow through a convergent-divergent nozzle. There 

are two locations in the nozzle where A/A* = 6; one in the 

convergent section and the other in the divergent section. Let 
pressure and temperature in the reservoir be 10 atm and 300 K 

(velocity being assumed zero). 

Let subscript 0 denote the point in the reservoir, 1 denote the 

location of the section in convergent section, 2 denote the 
throat and 3 denote the section in the divergent section. Areas 

at sections 1 and 3 are six times the area at section 2. Velocity 

at section 1 is given as 33.6 m/s. Calculate velocity, 

temperature, pressure, density and M at each location. 

Information at location 0 is fully known. P0 =10 atm (1032500 

Pa); T0=300 K. From this information we can calculate 

density 0 = P0/R.T0 where R is the gas constant (287 kJ/kg.K 

for air). This gives 0 = 11.992 kg/m3. 

Since velocity is known at section 1, temperature at section 1 

can be calculated. 

T1 = T0 – V1
2/(2.Cp) which gives T1= 299.44K. 

From two equations (1 = p1/RT1 and p1 = p0 - 1.V1
2/2), p1 

and 1 can be calculated. 

P1 = 1025762 Pa   and  1 = 11.93607 kg/m3.  
Thus c1 = 346.8619 m/s; M1 = 0.096869. 

 

 

Table 1: Comparison of values as per reference 1 and this 

communication. 

      

 

Location Item 
Value 
as per 

ref.1 

Value as per 
this 

communication 

 

 

1 Velocity, m/s 33.6 

(given) 

33.6 (given) 

 

 

Temperature, K 299.4 299.4355 

 

 

Pressure, atm 9.94 9.9347 

 

 

Density, kg/m3 § 11.9361 

 

 

Speed of sound, 

m/s 

§ 346.8619 

 

 

Mach No 0.097 0.096869 

 

 

2 Velocity, m/s § 306.525 

 

 

Temperature, K § 253.23 

 

 

Pressure, atm § 5.5262 

 

 

Density, kg/m3 § 7.8503 

 

 

Speed of sound, 

m/s 

§ 318.98 

 

 

Mach No § 0.960955 

 

 

3 Velocity, m/s 646.7 646.84 

 

 

Temperature, K 91.77 91.73 

 

 

Pressure, atm 0.154 0.1581 

 

 

Density, kg/m3 § 0.62 

 

 

Speed of sound, 

m/s 

192 191.98 

 

 

Mach No 3.368 3.369 

 

 

§ - Not given 
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Information at location 2 can be calculated from equations 4 

to 7 specifying A2/A1 = 1/6. 
 

V2 = 306.525 m/s;  T2 = 253.23 K; P2 = 570575.8 Pa (5.5262 

atm); 2 = 7.8503 kg/m3; c2 = 318.98 m/s; M2 = 0.960955. 

Again information at location 3 can be obtained from 

equations 4 to 7 by taking A3/A1 as 1. 

V3 = 646.84 m/s; T3 = 91.732K;  P3 = 16323.1 Pa (0.1581 
atm); c3 = 191.98 m/s; M3 = 3.369. 

Thus the information in summary is given in table 1. 

4. AREA RATIO LIMITS 

An examination of equations 4 to 7 shows that V1 and T1 are 

the only parameters having absolute values; rest everything 

(A2/A1, V2/V1, T2/T1, P2/P1 and 2/1) is in ratio form. All 
equations have two solutions: one for the subsonic region and 

the other for the supersonic region. Solution of the equations 

is real only for area ratio A2/A1 more than a critical value. 

Consider, for instance, eqn.4 from which we can calculate 
V2/V1 for various values of area ratio A2/A1. Taking V1 = 10 

m/s and T1 = 313 K we get curve 2 in fig.1 which shows the 

plot of V2/V1 vs. A2/A1. That the equation 4 has two solutions 

for each value of A2/A1 is also apparent from the fig.1.  

 

Minimum value of ratio A2/A1 for which we get real solution 

for curve 2 is 0.0487; let this be denoted by Am. The value of 
Am depends only upon values of V1 and T1.  

The value of Am can be approximated by the empirical 

equation             √   . Somehow, Am seems to 

represent choked flow. Before making any calculations, one 

should check the value of Am and make sure that the value of 

ratio A2/A1 is not smaller than Am.  

5. TEMPERATURE, PRESSURE AND 

DENSITY 
Equations 5, 6 and 7 also have two solutions for each value of 

the ratio A2/A1 above Am. Fig.2 shows variation of 
temperature, pressure and density ratios (T2/T1, P2/P1 and 

Ro2/Ro1) as  functions of A2/A1 for subsonic region. Similarly 

fig.3 shows variation of these ratios as a function of A2/A1 for 

the supersonic region. 

 

6. INCOMPRESSIBLE VS 

COMPRESSIBLE FLOW 
Fluid flows are usually classified as compressible and 
incompressible flows depending upon velocities involved.

 
While compressible flow is the real life phenomenon, certain 
assumptions are made for ease of calculations and the flow is 

called incompressible. It is to be noted that analyses using 

incompressible flow equations always contain an error, 

howsoever small. In fact, the incompressible flow has been 
called a myth1.  While incompressible analysis may be 

acceptable in a few practical situations, in some situations it 

may be desirable to use compressible flow equations to arrive 

at more accurate results. With availability of simple equations 
for compressible flows as derived above and computing 

power of modern day computers, it is no longer necessary to 

make any assumptions; one can easily solve all duct flow 

problems as compressible flows.  
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Venturi meters are often used to measure fluid flow rates and, 

usually, fluids are considered incompressible. If gas flow rates 
are being measured by venturi meters, one needs to be careful 

while assuming fluid to be incompressible particularly for 

high velocities. It may be better and more accurate if the 

analysis is carried out using compressible flow equations. 

7. CONCLUSION 
The usual method of analyzing duct flow problems for 

compressible fluids need no longer be solved using Mach 

number tables. Straight forward equations are presented which 

can be solved using modern computers. The need to 
interpolate values is dispensed with. Accuracy of results is 

higher than traditional method. 

8. REFERENCE 
[1] Modern compressible flow with historical 

perspective (third edition), John D. Anderson, McGraw Hill. 

 


